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The locomotion of elongated bodies in pipes 

By A. M. LAVIE 
School of Engineering, Tel-Aviv University 

(Received 26 February 1973) 

The theory describing the swimming mechanism of an elongated body is ex- 
tended to cover the cases of locomotion through unsteady streams in pipes. Such 
an extension is essential for the artificial fish ‘Pod’, a medical device which swims 
in the patient’s blood vessel. Two approaches are considered. First, potential 
theory is considered, and the results achieved show that the main influence of 
the pipe is on evaluation of the proper virtual mass. Next the flow is assumed to 
be viscous. The consideration of viscosity is obviously necessary for flows in 
pipes. In  that case the virtual mass is replaced by another equivalent mass 
depending on the viscosity and on the angular frequency of the lateral motion 
and in addition new terms appear in the local lift expressions. These are recog- 
nized as the viscous damping force. 

1. Introduction 
Many articles trying to explain the mechanism of the swimming of fish and 

the locomotion of different sea animals have been published during the past 
ten to twenty years. Special emphasis has been given to elongated bodies per- 
forming undulatory motion in an attempt to propel themselves through liquid 
media. For such bodies slender-body theory was applied in different ways to set 
up mathematical models and to analyse the propulsion capabilities of the 
bodies. The pioneer work in this field is undoubtedly related to Lighthill (1960), 
where a potential flow field was assumed for high Reynolds number cases. Since 
then the basic theory has been enlarged to cover many other cases such as the 
contribution of fins, combinations of two-dimensional tails with elongated bodies 
and large amplitude theory of fish locomotion (see Lighthill 1971). 

Strong viscous effects were considered by Lavie (see Lavie 1970, 1972) for 
the locomotion of elongated bodies in an infinite liquid. Slender-body theory, 
when applied to that case, led to relatively simplified two-dimensional cross-flow 
equations with parameters depending on the longitudinal distance. The Oseen 
approximation was used for the cross-flow field. The validity of this approxima- 
tion and the boundary conditions assumed are discussed in these articles. 

The problem of the swimming of an elongated body in pipes or tubes is of 
essential importance for artificial fish such as the Pod (see Lavie 1966), a medical 
device which swims in a patient’s blood vessel. This article deals with such IL 
problem. For convenience we choose the pipe’s cross-section to be circular 
although the same theory can be easily extended to other cross-sections. TO do 
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that, as can be seen later on, one has to find the potential and the stream func- 
tions for the two-dimensional cylinder whose instantaneous cross-section 
oscillates between the walls of the pipe. In  addition to that we assume here that 
the mainstream in the pipe is of constant velocity and an oscillating longitudinal 
velocity component which represents the variation of the blood flow in the vessels. 

In this article we approach the problem in two ways. At the beginning we 
assume the flow to be purely potential. Then Lighthill’s (1970) model is ex- 
tended and it is shown that when the radius of the pipe becomes infinite the 
two cases are identical. In  the following part of the article we assume the flow 
to be viscous and the work of Lavie (1970, 1972) is extended. It is shown then 
that the hydrodynamic virtual mass has to be replaced by other equivalent 
masses depending also on the viscosity and the angular frequency of the lateral 
motion. The expressions for these masses consist of Bessel functions of the first 
and second kind. Lastly it is shown that when the viscosity is equal to zero the 
two approaches coincide. The relevance of potential-flow theory to the Pod 
is somehow doubtful. The Reynolds number based on the Pod’s diameter and 
its lateral velocity may vary between 10 and lo3. However, the potential flow 
has some interesting features and at the end of the article it is shown how as the 
Reynolds number goes to infinity the potential and viscous theories coincide. 

2’ theory 2.1. The potential flow 

Figure 1 shows an elongated flexible body of length 1 propelling itself in a liquid 
streaming in a pipe of radius b. The body swims into the - x direction with velo- 
city U(t) ,  which in general changes with time. The origin of the co-ordinates is 
fixed at  the nose of the body and the stream far from it (denoted by point 1) 
is potential with uniform velocity W ( t )  distributed along the pipe’s cross-section. 
The transverse motion of the body’s centre-line in the z direction is h(x,t) ,  
which depends on the distance x from the origin and on the time t. The instan- 
taneous cross-sectional area of the body is A(x) .  

We shall assume that in the general case the velocities W ( t )  and U(t)  have the 
form 

where W, and U, are average velocities, W’ eiWt is some periodic oscillatory velo- 
city along the longitudinal axis and U’(t) is the time-dependent part of the 
velocity of the body, which is included to satisfy the equations of motion. 

To make the body fixed in the space we superimpose on the fluid-body system 
a velocity U ( t ) .  In  order to consider the new conditions at  point 1 we assume that 
A ( x )  changes very slowly along the body so that the new velocity at  point 1 is 
approximately 

, A = - A(x)dx ,  (2) 
A - A  K( t )  = W ( t )  + U ( t )  - A 

where A is the inner pipe cross-sectional area and 2 is the average body cross- 
sectional area. When A + co the fluid space becomes infinite and 

W(t )  = W,+ W’efwt, U(t )  = U,+ U‘(t), (1) 

: 1: 
WI(t) = W ( t ) +  up). 



The locomotion of elongated bodies in pipes 213 

FIGURE 1. Elongated body swimming in a pipe in a fluid with variable velocity. 

If and p1 are the potential and the pressure at  point 1, then 

@l = x W ) ,  

P ax at 

P1 = - P ( a @ l / a t )  +POW 
and from Bernoulli’s equation one gets 

(3) 

where H is the total weight and po(t) is a pressure which depends on time. Thus 

pH = po + + ~ y ( t ) ~  = p2 +p(a02/at) + & J P W ~ ( ~ ) ~  = constant, 

where p 2 ,  Q2 and W2 are the fluid properties at  point 2, not far from the body 
(see figure 1). 

Following Lighthill (1960) we introduce new co-ordinates X ,  Y ,  2 and T, where 

X = X ,  Y =y, Z =  ~ - h ( x , t ) ,  T = t ,  (4) 
a a a h a  a a a a a a a h a  
ax ax a X a r  ay ay’ a 2 - Z  Z = S a T Z a t a z ’  

%(X, T) = 

--__- - -  -- - -  so that - - 

A t  point 2 the longitudinal velocity of the fluid and its potential are 

+ W ( T )  A / @  - A f x ) ) ,  

@2 = $o@, T) + $l (X,  y ,  2, T )  + $@, Y ,  2, T), 1 ( 5 )  
a$,/ax = w,(x, TI. 

q$,+ are the potentials when h(X ,  T) = 0 and $2 is the potential due to the 
transverse motion h(x,t). $o is the potential of the free stream. Following 
Lighthill (1960) and using the slenderness parameter e wo find that the trans- 
formed Laplace equation for the potential Q2 reduces to 
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when terms of order e2 are ignored. Notice that for an infinite fluid aW2/aX = 0. 
Since a2$o/i3X2 = aW2/ax it follows that (6) can be split: 

If the equation of the surface of the stretched-straight body is F ( z ,  y, z )  = 0 
then in the co-ordinates ( 4 )  the surface of the swimming body has the equation 
F ( X ,  Y , Z )  = 0, and the boundary condition on it is obtained by setting the 
substantial derivative DF/DT equal to zero: 

DF ah a@2) (aF ah aF) + L - + - 2 -  a@, a$' a@ aF = o. 
Z-ZZ ayay  az az 

Under the assumption that ah/aT and ah/aX are small the above expression can 
be simplified to 

( 8 )  
ah aF (%F ah aF) aQ2aF +2- a@ aF = 0. +-- --- 
aTaz+% a x - ~ ~  aYaY azaz 

One boundary condition is obtained when h ( X ,  T )  = 0 and $2 = 0, then 

The second boundary condition is achieved when h ( X ,  T )  + 0 and $2 + 0 by 
subtracting (9) from (8): 

The third boundary condition is that on the surface of the pipe: 

when r is the radius in cylindrical co-ordinates. 

2.2. The lift distribution 
In  the new co-ordinates c)2 is the potential at  given X of an infinite cylinder 
with cross-sectional area A(s)  moving in the pipe along the 2 axis with transverse 
velocity 

Hence, if $(X, Y ,  2) is the potential of an infinite cylinder with cross-sectional 
area A ( X )  moving with unit velocity in the Z direction then 

The pressure at  point 2 can be calculated from Bernoulli's equation. When 
terms of order €4 are neglected with respect to terms of order e2 one gets 

P2-Po = PI + PII  + PIII, 

v(x, T )  = (ah/aq -t- w2(ah/ax). (12) 

$2(X, y ,  z, T )  = V ( X ,  T) $(X, y ,  2). (13) 

(14a) 
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Lighthill (1960) showed that pI and p I I I  do not produce local lift for symmetric 
cross-sections. The only lift is produced by p,, and then 

where L is the local lift at  given X and s, is the contour of A ( X ) .  To solve (15) we 
remember that $2 = P$ and in addition 

P f S Z W >  Y , Z ) d Y  = P a x ) ,  (16) 

where p A ( X )  is the virtual mass per unit length of the body swimming in the 
pipe. If for instance the local cross-section is circular with radius a(x) then 

- P cos 0 at r = a(z) ,  

0 at r = b. 
a$,/ar = 

0 is the polar angle measured from the Z axis. Hence 

The hydrodynamical forces Fy and Fz are calculated from 

p /p  = (a$,/at) - $q2 (q  is the total velocity), 

b2 + av 
na(x)2 - 

b2-a(3)2 at ' 
Fz = - 

Fv = - 

where 1 and m are the direction cosines and ds is the element of arc along the con- 
tour s,. In  that case one sees immediately that the virtual mass per unit length is 

The evaluation of the local lift L from (15) is very similar t o  that provided in the 
appendix of Lighthill (1960). A more exact method is given in Lavie (1973). 
The result here is certainly different from that for an infinite fluid and is found 
to be 

For an infinite fluid (b -+ co) W2 +- U(t)  + W ( t )  = W,, aW2/aX = 0 and the results 
agree definitely with Lighthill (1960). 

2.3. The thrust force 
The thrust P is written as an integral over the surface of the swimming body 
and then expressed using the co-ordinates (4) as an integral over the surface s: 

P = fs (PI +PI1 +PI111 dy dz = 1 1 (PI +PI1 +PI,,)) d Y (& dx + d z )  
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For a cylinder of symmetric cross-section the pressure p I I  does not provide any 
resultant force in the x direction. The pressure p I  associated with the flow when 
h(x,  t )  = 0 creates a force which depends on the variation of the potential with 
time. Thus 

s s j y I d Y d Z  = - p  -(q50+q51)dYdZ. 
s,/a”T 

The value of the above integral depends on the body’s shape and on the radius 
of the pipe. For an ellipsoid (X2/a2) + ( Y2/b2) + (Z2/c2) = I, for instance, and for an 
infinite fluid ( b  -+ co) the fluid velocity becomes W2(T) = U ( T )  + W ( T )  and the 
thrust force resulting from the above integral is 

where M’ is the displaced mass and 

dh s 0 (a2+h)A’ 
, 01, = abc k -- a, 

2 -  2-a, 

A = {(a2+A)(b2+h)(~2+h))B. 

When the radius of the pipe is finite then W,(X, T )  = U ( T )  + W ( T )  [ A / ( A  - A ( X ) ]  
will be influenced by the body’s cross-section as well. In  general we can write 

I 5 f p , d Y d Z  = - p  = M‘ 

where k, is a hydrodynamic coeEcient influenced by the body shape and k, also 
depends on the radius of the pipe. 

The integral of the local lift provides 

(More details are given in Lavie 1973.) 
To evaluate J/p,,,d Y dZ we evaluate the change of the fluid momentum 

between the cross-section at  d ( X  + S X )  and at A ( X ) .  Following Lavie (1973) we 
find that the change of the momentum is 

p V [ A  ( X  + S X )  - A ( X ) ]  + p A ( X )  [ V ( X  + SX) - V ( X ) ]  
aw ah 

ax ax ax = p V dX + p A ( X )  -2 - dX 

and as explained by Lighthill (1960) we finally have 
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The overall thrust force is therefore 

247 

To find the mean thrust by averaging over a long time period (indicated by an 
overbar) we remember that 

U = Uo+U’(T),  W, = Uo+ U’(T)+[Wo+w’eiwt ]A/ (A-A(X)) ,  

3. Viscosity considerations 
3.1. Formulation of the problem 

I n  many cases the viscosity has to be considered very carefully, especially in 
cases where the diameter of the pipe is not much bigger than the cross-sectional 
dimensions of the swimming body. The velocity of the mean stream is distributed 
between the inner wall of the pipe and the surface area of the body. We assume 
that a t  the edge of the body’s boundary layer the mean velocity is again 

W, = U+ W A / ( A - A ( X ) )  

although more accurate calculations have to be done in any particular case. 
Following Lavie (1970) we shall assume that the boundary conditions may be 
exmessed as I 

V = (ah/at) + W,(ah/ax) 

0 on the pipe. 

on the cylinder, 

Since the body is elongated we can use the assumptions of slender-body theory 
and write the equation of continuity in the following way: 

d u  dv dw dW2 dv dw -+-+- N - +-+- = 0. dx dz dv dx dy dz 

I n  what follows we shall use the linearized Oseen equations, where the velocity 
u is taken as W2 + u’ and u‘ is the perturbation velocity. This explains the use of 
dW,/dx in (26). The form of (26) suggests that we can split it in the following way: 

v = v o + q ,  w = WO+Wl, p =po+p1,  

aw, av, awl 
dy dz ax’ ay dz 
d v , + d w o  = -- -+- = 0. (27) 

It follows that vl and w1 are the velocities ofa  two-dimensional flow characterized 
by the stream function $ such that 

v1 = a$/az, w1 = -a$/ay. (28) 
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Lavie (1972) has explained the validity of the Oseen equations when the in- 
fluence of the viscosity on the lift and on the thrust force is considered. Using the 
Oseen equations we can write the following sets of differential equations: 

aul auf 
-+W,--VAU‘ = 0,  
at ax 

avo2 avo2 

at 2 ax -+W--VAV~, = 0, 

-+W,--VAW~, aw02 aw02 = 0; 
at ax 

~ + W L + - - - v A , v , =  av lapl 0, 
at ax p ay 

awl awl lap1 
-+w2-+--;;--v~2ul = 0, 
at ax p 0% 

4 P 1 =  0; (31c) 

where A i s  the three-dimensional Laplacian operator (a2/ax2) + (a2/@,) + (a2/az2) 
and A, is the two-dimensional Laplacian operator (a2/@,) + (a2/&,). 

I n  the above equations it is understood that u = W2+u’, v = vol+vo2+v1 
and w = wol + wo2 + zul. Equations (30) determine the skin friction on the body. 
Since the skin friction for this case is not treated here we shall leave those equa- 
tions. 

3.2. The lift and the thrust 
The pressure po in (28) is similar to the pressure p ,  in the potential flow (see 
equation (19)). This pressure does not provide local lift because we assume the 
cross-section to be symmetric. It does provide a thrust force. If 0 is the potential 
function such that a0/ax = - W,, a @ p y  = - vO1 and a 0 / a z  = - wol then 1 

1 a@ 
--Po P = --;;-+$(w;+V;,+w;,) G t  N -- 

This pressure gives the same thrust force Po as in (20)) i.e. 

Finally we look for a solution of (31) in order to calculate the local lift and the 
t~otal thrust. 
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Following Lavie (1970) and using (28) we define 

$ = V$', V = (ah/at) + W2(ah/8x) 

and we again get the linearized Oseen equation 
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(34) 

For transverse motion h(x, t )  of the simple harmonic type it can be shown that 

- i( sz - kW2) = vc2, 
(a V/at) + W2( a v/as) 

V (35) 

where Q is the angular velocity and k is the wavenumber of the travelling wave. 
Thus we can solve (31) by writing 

(36) 
A 2 ( 4 $ '  - c2$') = 0, $' = $1 + @2,\ 

A21jfl = 0, A2$2-c2$2 = 0. 1 
The solution for $1 suggests that there exists a potential Q,(x,  y, z ,  t )  conjugate 
to $l such that 

(37)  i Ql = V$,  A2Q1 = 0, 

P1 = P[(a/at)  + %(a/Wl (V$),  

rl = = p~,+, = - + C ~ V $ ~ .  

The local lift force L(x, t )  is calculated from Lavie (1970) as 

where 1 and m are the direction cosines, C is the contour of the cross-section, Fl 
is the vorticity function and s is the arc length along the contour. 

By substitution of the appropriate expressions for pl  and I?, in (38) one gets 

In  order to evaluate (40) one should find the potential $ and the stream function 
@2 for each individual case. 

For instance, let us take the case of an elongated body with a circular instan- 
taneous cross-section with radius r = a(x) swimming in a pipe of radius b. On the 
cylinder Y = a(%), v = 0 and w = V = (ah/at) + W,(ah/ax) and on the pipe Y = b, 
v = 0 and w = 0. For that case the stream functions and the potential are 

$1 = sin 19{Ar-~ +BY}, $2 = sin B{DK,(cr) + EI1(cr)}, 

$ = cos O(Ar-l+ Br) ,  
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where K,(cr) and I,(cr) are Bessel functions with imaginary argument of the first 
and second type and of order one. From the boundary conditions represented 
above the constants A, B,  D and E can be evaluated: 

A = a2{K2(ca) [b212(cb) - a212(ca)] -12(ca) [b2K2(cb) - a2K2(ca)]}/d, 

B = Ko(cb) [b212(cb) - a212(ca)] - I,(cb) [b2K2(cb) - u2K2(cu)]/d, 

D = 2[b2I2(cb) - a212(ca)]/cd, E = 2[b2K2(cb) - a2K,(ca)]/cd, 

d = [Ko(cb) - Ko(ca)] [b212(cb) - a212(ca)] - [Io(cb) - Io(ca)][b2K2(cb) - a2K2(ca)], 

where Ko,K2,10 and I 2  are Bessel functions (defined in Watson 1962, p. 79) 
with imaginary argument of type one and two and order zero and two. 

The equivalent m w m  per unit length are found to be 

a 

where A ( X )  = ra2, the cross-sectional area. 

that t.he constants A ,  B, D and E satisfy 
If w0 let b -+ m (for the swimming of a body in an infinite fluid) it can be shown 

A -+ { - a(x)"K,[ca(x)l}/Ko[ca(x)I, B + 0, 
b-tm b-+m 

which are in full agreement with the results achieved by Lavie (1970). 
Segel (1961) has found the stream function and the force on a vibrating 

cylinder surrounded by viscous flow bounded by an outer cylinder. To compare 
the results obtained here with those obtained by Segel, we shall take the simple 
case of a rigid cylinder with radius r = a vibrating in a liquid bounded by an 
outer cylinder of radius b. In  this case the lift force per unit length of the cylinder 
is 

L(t)  = -piQV(t)ma2{(Zb2/A) [K2(ca)12(cb) -I,(ca)K,(cb)] + 11, 

where V ( t )  = Im{qeint}. The term Im{piQF'(t) ma2} in the above expression is 
the force required to balance inertia of the inner cylinder. The above result 
coincides with the results obtained by Segel. Let us define the Reynolds number 
Re = a2i2/v such that ca = (i Re)+. It can be shown that for Q -+ m, and there- 
fore for Re -+ co, the above expression for the lift L(t)  on a vibrating cylinder 
approaches the value 

pAQV, sin at. 
b2 + u2 b22 J Z  b22 $2 
b2-a pAaq cos a t  + (b2 - a2) ,/Re PA ' q  'OS + (b2 - a2) JRe  

In  the limiting case when Re = a3 (i.e. v = 0) L(t)  approaches the value for inviscid 
Aow, for which the virtual mass was given by (17). In  the above expression 
A = 7ra2 and the terms containing V, cos a t  constitute the virtual mass for the 
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Re = co 

Re = 900 

-b 
Re = 1 

2 
1.67 
0 

2 
1.795 
0.125 

2 
1 

+ 42.6 

TABLE 1 

3 
1.25 
0 

3 
1-366 
1.116 

3 
1 

13-3 

5 
1.085 
0 

5 
1-183 
0.0988 

5 
1 
5.8 

02 

1.00 
0 

1.094 
0.094 

1 
0 

co 

co 

cylinder vibrating within the boundaries of the outer cylinder with radius b. 
The term containing V1 sin Qt is actually the damping force. 

When Re ++ 0 the expression for L(t) can be expanded into 

L(t) = - 4pAQ2‘V,sin +pAQV,cosQt. 
Re+o In (bfa) Re - (b2 - u2)/(b2 + a2) 

The V, cos Qt terms can be considered as the virtual equivalent mass known in 
inviscid theory. The V, sin Qt terms, terms which are in phase with the velocity, 
are actually the viscous damping force. Let us define by m the normalized virtual 
mass given by 

(Re% 11, 

(Re < I), 
where a = b/a, and let us also defke by k the normalized damping factor given 

4 
(Re < 1). i- Reln (a )  - (a2 - l ) / (a2  + 1) 

To illustrate the above expressions we summarize the results in table 1. 
From the above results one can see that the virtual mass m has a maximum 

between Re = 00 and Re = 0. The damping factor increases all the time as Re --f 0 
and actually tends to infinity at Re = 0. Both m and E tend to infinity as a + 1 
(i.e. b --f a). 

As was mentioned by Segel the results achieved for Re < 1 are valid as long as 
a Re also tends to  zero. The case Re < 1 but a Re not too small is specially treated 
by Segel. 

The thrust force created by the local lift is 

obviously the total thrust is P = Po + PI. (43) 
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4. Discussion of results 
Comparing the results obtained when the viscosity is considered with the 

results obtained from potential flow (see the expressions for the local lift L ( x ,  t )  
and the thrust P in (21), (23), (39) and (43) and table 1) we see that there are 
two main differences. 

(a) The virtual mass PA(%) per unit length from potential flow (equation (16)) 
is replaced by an equivalent mass per unit length defined by pC,B(x) (equation 
(41)) which includes effects of the viscosity and the frequency Q of the lateral 
velocity or the Reynolds number Re = aZQ/v. When the viscosity is equal to zero 
then pC,A(z) becomes the usual virtual mass per unit length (Re  -+ 00). 

( b )  There are additional damping terms dependent on the viscosity. These 
terms on one hand reduce the thrust force P and on the other hand increase the 
total power, causing a poorer efficiency. When the viscosity is zero, these terms 
become, of course, zero too. 

It should be noted that the analysis represented in this article is valid as long 
as the radius of the pipe is considerably bigger than the cross-sectional dimensions 
of the body. For smaller radii one cannot accept the assumptions about the velo- 
city distribution between the surface of the body and the inner wall of the pipe. 
It may be expected that the boundary layers occupy the whole space between 
them and no potential flow can be expected. However, it is expected that for 
radii at  least twice or three times the cross-sectional dimension of the body the 
above results can be accepted. 

In the case of the Pod this theory cannot be applied for swimming in the blood 
vessels in the brain. For other blood vessels in the human body the diameter of 
the vessels may be several times bigger than the diameter of the Pod. 

The author wishes to express his deep gratitude to Professor Sir James Light- 
hill, who encouraged him to extend the existing theories to the problems treated 
in this article and for the extremely interesting discussion of them. 
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